
�AFCRL.64..7I�

PROPAGATiON OF ACOUSTIC-GRAVIlY WAVES
IN A IEMPERATURE- AND WIND-STRATIFIED ATMOSPHERE

0

Allan C. Pierce

RESFARCH AND ADVANCED DEVELOPMENT DIVISION
AVCO CORPORATION

Wilmington, Massachusetts

RAD-TR-64-33

Contract No;AF19(628)�3891

Scientific Report No. 2

Project 7637

Task 76370 COPY � OF �T�"F�

HARDCOPY $. �

MI�hUFICi1E A
28 August 1964 A'! �

AIR FORCE CAMBRIDGE vfSrA!�CH IABC2AZORIES
OFFICE OF AERO¶ PACE RE3�ARCH

UNITED STATES AIR FORCE
BEDFORD. MASSACHUS�rTS



AFCPL-64-711

PROPAGATION OF ACOUSTIC-GRAVITY WAVES
IN A TEMPERATURE- AND WIND-STRATIFIED ATMOSPHERE

Allan D. Pierce

RESEARCH AND ADVANCED DEVELOPMENT DIVISION

AVCO CORPORATION

Wilmington, Massachusetts

RAD-TR-64-33

Contract No. AF19(628)-3891

Scientific Report No. 2

Project 7637

Task 763702

.2, .- \j'igst 1 1n4

APPIOVE D

R"It f Penndo 'rf I . .Purirontt1, .¶.*r~iz
(;eophý."it •:S ct -t i~;.I -!~ll Spact 'S" It.-i ct'II

AIR FORCE CAMBRIDGE RESEARCH LABCRATORILS
OFFICE OF AEROSPACE RESEARCH

UNI iED STATES AIR FORCE
BEDFORD, MASSACHUSETTS



NOTICE

Requests for additional copies by agencies of the Department of Defense, their
contrac;ors, and other Government agencies should be directed to the:

DEFENSE DOCUMENTATION CENTER (DDC)
CAMERON STATION

Alexandria, Virginia, 22314

Department of Defense contractors must be established for DDC services or
have their "need to know" certified by the cognizant military agency of their
project or contract.

All other persons and organizations should apply to the:

U. S. DEPARTMENT OF COMMERCE
OFFICE OF TECHNICAL SERVICES

Washington D.C., 20230

- II-



ABSTRACT

A theory is presented which permits the study of the effects of horizontal winds

on the dispersion and amplitudes of acoustic-gravity waves in the atmosphere.
It is shown that the effective horizontal group velocity for a given frequency in
a given normal mode depends on direction of propagation as well as on frequency
and thaL it is not necessarily in the same direction as the horizontal wa'e num-
ber vector. A number of useful integral theorems are derived from a variational
principle and one is subsequently applied to the development of a perturbation
method for !" c computation of wind effects on dispersion. Application of the

method to a realistic example indicates that winds car appreciably alter the dis-
persion of the normal modes and that they should be considered in any quantita-
tive interpretation of experimental microbarograms.
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NOMENCLATURE

Latin

C speed of sound, (yp,/po)1/2

cm speed of sound in high altitude layer

ex unit vector in eastward direction

.ez unit vector in vertical direction

( function characterizing source time dependence

g acceleration of gravity

g 1:-) Fourier transform of f(t)

k horizontal wave number vector

k magnitude of k

kx, ky componente of k'

kn (• Ok) ekgenvalue of reiidual equations

k0 (C) eigenvalue in absence of winds

index for normal modes

deviation of pressure from ambient

PO ambient pressure

4 vector wind correction to horizonta! wave njmbor

q4% qV components of q

.a•. q4  derivatives of %K (,) and

position of observer

Io position o( source
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NOMENCLATURE (Conci'd)

Latin

time relative to excitation of the source

U deviation of particle velocity from ambient

4v ambient wind velocity

ambient wind velocity in high altitude layer

< , >weighted average of wind velocity

horizontal group velocity

'a magnitude of '

vSX, VSy components of #S

'Ba group velocity of nth normal mode

, vcomponents of • parallel and perpendicular to wind direction

0(.) group velocity in absence of winds

vertical component of

a,, y herisontal coordinates

a altitude

% source altitude

%e lower boundary for high altitude layer

A characteristic atmospheric parameter

As value of A in high altitude layer

A* relatie amplituede of nth normal mode

All. A|t coefficitent In residual equations

t constant indeper•vent of



NOMENZ':LATURE (Concl 'd)

Latin

Di 0/at V .V , time derivative following wind

G(O, co) time dependent amplitude of normal mode wave

Hm scale height

1i, 12, 13 characteristic integrals

K constant

P(r, •) factor in Fourier transform of p

P (r, •) complex conjugate of P (t, C)

Ph phase of compler. number

Q factor of A.

RT magnitude of horizontal projection of r" -'o

pt, real part

S, T functions of k characteristic of high altitude layer

Wv ) Wronskian

solutions of residual e(zsationv

Y. ZI solutions satisfying lower iundary k )ndition

VU, U solutions satisfytng upper boundary condition

gtgentunctiom pair satiotyano both boundary conditione

OCeek

function char4ateriaInt hisib .l0itude layar

Pa. il pha*e facto ot no rmatl MnOd

rotio of 0.0citic Mat# of bit



NOMENCLATUURE (C0ncl ld)

Greek

B phase of S(w)

BA, 8A12, etc. small variations in A, AA2, etc.

o or gt2 depending on sign of a2 P/a .2

0 angle between horizontal projection of f'-r, and x-axis

ev (z) angle between ' and x-axis

Ilk angle between k and x-axis

1kn (w, O) saddle point for £k integration

deviation of density from ambient

ambient. density

� focusing factor in nor..al mode wave amplitude

angular frequency

w, wl, etc. characteristic frequencies of high altitude layer

• (6, t/RT) freruency arriving at time t

B' Viisaila- Brunt frequency

080 (Y - 1)1U2 Seicm

""Am I /2 ! S/c?

AI, AZ2 integrals characterizing variations in c2 and *

40 normar•ized contribution to waveform

oJ,
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1. INTRODUCTION

Previous attempts to explain the features of the microbarograms of infrasonic
waves recorded following nuclear explosions 1°Tand natural atmospheric explo-
sions 8, 9 have for the most part been restricted to atmospheric models with no
ambient winds. To what extent this neglect of winds is justified is not entirely
clear. Diamond1 0 has recently discussed their effect on the appar0nt sound-
speed profile above White Sands and has exhibited data which would seem to
indicate that typical winds are of sufficient strength to have an appreciable ef-
fect on sound propagation.

A noteworthy beginning in the development of a theory which considers the ef-
fects of winds was made by Weston and vanHulsteynI 1 who showed that the
linearized equations of hydrodynamics are still separable if the winds are hori-
zontal and vary in direction and magnitude only with altitude. They also indi-
cated how one might calculate the variation of the horizontal phase velocity with
frequency for fixed direction of the norizontal propagation vector k.

Pridmore-Brown 1 2 also derived the general linearized equations for sound
propagation in an atmosphere with arbitrary sounJ-speed profile and horizonta!-
wind profile. In some respects, his theory went further than that of Weston and
vanHulsteyn, in that it dealt with waves from a point source rather than with free
waves (whose wavefronts are vertical planes). However, Pridmore-Brown con-
sidered only the steady state case as he was not concerned with dispersion
phenomena. Furthermore, since he was interested in sonic frequencies of the
order of 100 cps (as opposed to infrasonic frequencies of the order of 10-2 cps),
he was enabled to make a number of approximations which cannot be justified
for lower frequencies.

In the present paper, the theories of Weston and vanHulsteyn and of Pridmore-
Brown are extended to the consideration of the propagation of infrasonic waves
from an idealized point nource characterized by an arbitrary time variationt (t).
The expressions derived for the pressure on the ground at a large distance from
the source represent an extension of the method of normal modes to the propa-
gation of infrasonic waves from a point source in the Presence of horizontal
winds. Our derivation of these expressions is similar to ttiat of Pridmovte-
Brown and is therefore given as briefly as possible. One s'shstantial departuire,
from Prid.ýnore-Brown's method appears in the method ot treating the two-fuld
integration over the components of the horizontal wave number. It is our opintoll
that the inalhematical approximation utiized by Pridmore-Brown as indticated
by Eqn. (ZZ) in his paper is not justified. His approximation would indicate that
the horiatental wave vector point.; rar'ially from the source a.,ad hence in tht. saxti
direction ;&s the -i'tup velocity. The theory presented in this paper indicates
that this is not tht case in general and tives a method of computing the angi,.ula
deviation of th, horizontal wi-ve vector from the ditrrction -,i the horizontal gf.,.
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The implementation of the theory rests on the solution Df two coupled first
order differential equations, which represent generalizations of the residual
equations diqcussed by Eckart. 13 With appropriate boundary conditions (whose
rationale we discuss) these are eigenvalue equations foJr the magnitude of the
horizontal propagation vector 9. The eigenvalues k will depend on the direction
of k when winds are included as well as on the frequency and the mode index n.
The theory presented in sections IV and V shows how the group velocity may be
calculated from a knowledge of the partial derivatives of the eigenvalues with
respect to frequency and angle of wave normal to a given horizontal direction.

In section VI we introduce a variational technique which leads to a number of
integral theorems relating the eigenfunctions of the residual equations and their
eigenvalues. In particular, the theorems give methods of computing the partial
derivatives of the eigenvalues from a knowledge of the eigenfunctions for a single
choice of parameters and therefore eliminates numerical differentiation. An
integral expression for the group velocity is then easily obtained.

In section VII we discuss the case of propagation in an isothermal atmosphere
with constant winds, This is a particularly simple case and one which should
be carefully studied before proceeding on to more complicated model atrros-
pheres. Our arnalysis shiows that both the surfaces of constant phase and con-
stant arrival time are circles whose centers move with the wine velocity and
whose radii increase at the sound speed.

In section VIII we use one of the integral theorems derived in section V1 to de-
velop a perturbation method for taking winds into consideration. This method
makes calculations of dispersion effects of winds highly feasible an " requires
only that the wind independent eigerafunctions be known. These, however, have
been explicitly or implicitly obtained by all previous writers who have com-
puted horizontal phase and group velocities for wind independent model atmos-
pheres. As an example, we make use of the computational results of Pfeffer
and Zarichny 5 zo find the effects of a wind profile exhibited by Diamond1 0 on
the dispersion of the fundamental mode.

hi mm nn nnl imnnm in nn- a - un



II. FORMAL SOLUTION OF THE LINEARIZED
EQUATIONS OF HYDRODYN4AMICS

The atmosphere is assumed to be an ideal gas which obeys the equations of
hydrodynamics. The ambient variables p0 , p., and ' are assumed to satisfy
these equations in the absence of any external perturbation. The w;nds are
assumed horizontal and independent of the horizontal coordinates x and v and of
time t. The linearized equations of hydrodynamics as derived by Pridmore-
Brown will therefore govern the spatial and temporal variations of the first
order quantities p, p, and 1. In a somewhat altered notation, these equations
are

Dt(p,) V po d/'/dz - Vp - gpJ (2 1)

Dtp + V" (pil) = 4nwf(t) 8(? -0 ) (-. )

DOp - w(gp 0 + c 2 dpo/dz) = c 2 Dtp (2.3)

The term on the right-hand side of Eqn. (2. 2) has been included to take into
account the presence of a source at the point I. . The function f( ) is to be
chosen such that the linearized equations predict as accurately as possible the
known properties of the acoustic field in the near vicinity of the source. A
direct intepretation of f(t) may be obtained by integrating both sides of (2. 2)
over the volume of a small sphere of radius R. Upon applying the divergence
theorem, one finds in the limit of sufficiently small R that

/oun da = 4iif(0 (2.4)

where n is the unit normal to the surface S of the sphere of radius R. The
integral on the left may be interpreted as the mass expelled from thie interior
of the sphere per unit time. (This assumes that negligible mass has been added
to the air by the explosion itself.)

A formal solution of the linearized equations may be obtained by use of Fourier
transforms. Using this method, one finds the excess pressurr ait a point at

time t to be given by

P ,j P a{'h(
f1



where S(O) is the Fourier transform of f(t) , such that

f~) .fe. (Wi) d (2.6)

and where P(U, 0) may in turn be represented as atwo-fold integral over the
components k., ky of the horizontal wave number k,

P, ®rJ-d) dl keik )zO, W,) 0 (2.7)

The expression Z(z,z., w, k) must satisfy a differential equation which may be
derived in the manner indicated by Weston and vanHulsteyn and by Pridmore-
Brown for the quantities Mf(z) and X(z) in their respective papers. The differ-
ential equation we find by this method is

S A) A12 7 + A)~ A4 Z =.(ASf) b(Z Zd) (2.8)

where

A12 = .2 - (2.9)

A - (k/f) 2  c' 2 , (. 10)

A 0 (1- 1/2y) /c 2 
- (2c 2)-l dc2/dz (2.11)

28 (y- 1) 8
2 /c 2 + (g/c 2 ) dc 2/dz (2. 12)

and O-w-k-f. Both A and weB (Vaisala-Brunt frequency) are functions of z which
characterize the ambient atmosphere. A somewhat more convenient represen-
tation of Eqn. (2. 8) is that of two coupled first order differential equations. i. e..

dY/h - AY - A2 Z - -(i/l-) Z-Zo) (Z. 13a)

dZ/da • AZ - A12 Y 0. 2. 13b)

The utility of taking the equations in this form has been demonstrated by Eckart| .
Following Eck&rt. we shall refer to these two coupled equations as the residual
equations. The second of those may be considered to the definition of the auxili-
ary function Y (a. go. ,.. k)

-4-



The delta function on the right-hand side of Eqns. (2.8) and (2. 13a) reflects
the presence of the source at altitude z, and requires there be a discontinuity
in YanddZ/dz at z=zo.

Boundary conditions on the set of coupled equations (2. 13) are chosen tc insure
that w, the vertical component of particle velocity, be zero at the Earth's sur-
face and are chosen to insure that the total solution (2. 5) conforms to causality.
The former requirement leads to the condition Y=O at z=O. (The derivation of
this condition is similar to Weston and vanHulsteyn's derivation1 II of d X/dz = 0
at z=O.) The causality requirement has been shown by the author14 to be satis-
fied if Z(z, zo, to, k) for real k. , ky is an analytic function of w ior all complex
w in the upper half plane and vanishes as o approaches ij.

To relate this requirement to one governing the behavior of Z and Y at large z,
it is convenient to assume that the properties of the uppermost region of the
atmosphere are such that the z-variation of 7 and Y above some he:ight zm may
be written doin explicitly. For this reason, we assume that the atrnosphere
is isothermal above Zm and therefore has a constant sound speed cm in the upper-
most region. The winds at this height will also be assumed to be constant in
magnitude and direction.

With this assumption as to the nature of the upper atmosphere, one may show
that the causality requir -nent requires that Z be of the form

Z = D eiaz (2. 14)

for z > zm, where D is independent of z and

a --. 2 (12 - (12M) - 01 - )Bm)

is a function of fa, k, and ky. Here flm= (-k' M, OAM= (y!2)g'cm , wBm = (y -

where cm and vm represent the ambient sound speed and wind velocity

in the isothermal layer.

To insure causality and the desired behavior of Z as a function of complex ,

one must require that a be an analytic function of to in the upper half plane and
that it approach iaas ,,wapproaches .•. This requirement may then be used to
specify the phase of a for real -and L, giving

Ph (a) - o " Ca2 (2. 1I 4)

"= "/' ti ,- ( a2 (2.1 ISb)

td to ý0 I• Q" /. I Sc)

o0 (a. to o0 (Z. I Sd)



Ph (a) v/2 w-2 < w < w-1 (2. 15e)

"ff w < w-2 (2. 15f)

where the five characteristic frequencies are given by the following expressions

L2 k" (S + T) (2. 16a)

+ k";m - (S - T)' (2.16b)

(2. 16c)

with

S (W2 + c2 k2)/2 (2. 17a)

T (S2 _ C2 W2 k2)% (2. l7b)

The upper boundary condition on the solution of Eqns. (2. 13) is therefore that
Z be of the form (2. 14) when z > z., where the appropriate phase of a must be
determined from Eqns. (2. 15) and (2. 16).

Following a method used previously by Haskell 1 5 , we may formally write the
solution for Z(z, zo. o, k) of F.qns. (Z. 13) in terms of quantities Zg(z). Yg (z) and

Z0 (z), Y, (z) which satisfy the homogeneous equations (i. e., Eqns. (2. 13) with
the omission of the source term). The set Z1, Y1 is defined as satisfying the
boundary condition Yj - 0 at z - 0, while the set Zu, Yu is defined as satisfying
the upper boundary condit'lon. In terms of these quantities, the solution for
Z of the inhomogeneous equations which satisfies both upper and lower boundary
conditions is given by

Z - i Zu (Z>) Z/(z<) (Z. 18)0. (z (oZ, )- O o) W (ZO)

where z, and z< refer to the greater or lesser of z and z . and the Wronskian

W (ZO) is defined to be

Y (8) a YU (80) ZI( C ) - ZU (4o) Y1(0) (2. 19)

One may show directly from the homogeneous form of Eqn,.. (2. 13) that the
Wronskiai is independent of altitude. Thus, we may set

W (a) - W (0) - yU (0) Z (0) (2. 40)

-6.



where we have made use of the fact that Y, (0) = 0.

A more convenient expression for P(r" to) may now be obtained by inserting the
expression above for Z into Eqn. (2.7). Since observations of infrasonic waves
are usually made on the ground, we take z = 0 in the resulting expression. This
gives

2w
P i l dk~o (0-Ok

, - i/w dOk k dk e Zu(zo)/.[Yu(O)) (2.21)

0 0

Here the integration is expressed in cylindrical coordinates; Ok representing
the angle which k makes with the x-axis. The magnitude of the horizontal
projection of r- r-, is abbreviated by RT and the angle between this projection
and the x- axis is denoted by 0.

-7-
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IIL THE METHOD OF NORMAL MODES

While, in principle, the order of integration in Eqn. (2. 21) is immaterial,
great care should be exercised in choosing this order if one or both integra-
tions are to be performed approximately. The technique utilized by Pridmore-
Brown was to first integrate over ok using the saddle-point method and then to
integrate over k using the method of residues, In our opinion, this order of
integration leads to incorrect results sinre the saddle-point method is inappli-
cable if the saddle-point is close to a pole. This appears to be the case in
Pridmore-Brown's method, for, in utlizing the method of residues in the
integration over 'c, it is the behavior of the integrand near its j.oles which is
of principle importance. This objection can be overcome if one first does an
integration over k using the method of residues and then does the Ok integration
using the saddle-point method. This is the program we follow here.

The path for the k integration in Eqn. (2. 21) is first deformed to one which (in
the case oIC .. - o) encloses all poles of the integrand in the first quadrant and
which inclur'es a contour going from the origin along the positive imaginary
axis as well as contours arouwid branch lines. (All branch lines emanating from
branch points in the first quadrant are taken as extending vertically upwards. )
For large RT, the predominant contribution to the total integral comes irom the
residues of those poles which lie on the real axis. The remaining terms may
be discarded. The integrand thus obtained for the 0k integration will consist of
a sum of terms, each representing the contribution from one of the poles in the
integration over k. Each term is integrated separately, and the saddle -point
approximation is assurned to be applicabie in each case. The saddle-point is
taken as that of

eX, t kn RT ci t(f k) - (3. 0)

where k, (,',, (k ) is the location of the rth pole in the integrand prior to the
performance of the k -integration. (One should note that the saddle-point will
generally not be at eý = 0. ) In general, the validity of the saddle-pcint method
may be expected to increase with increasing RT. f no real saddle-point exists
for any particular term we may assume the contribution from that term to be
negligible for large RT relative to any other term with a real saddle-point.

The resulting expression for P(;,..) appropriate for large KT appears as a suom
over normal modes in the torm

All N t R



Both the phase factor gn and the amplitude factor A. for each normal mode are
functions of w and 0, but not of RT .

The method for obtaining the quantities A. and p. follows from our preceding
remarks concerning the procedure f'nr deriving Eqn. (3. 7). For W > 0, let
kn((, Ok) be a real positive root of

P () Y (0) 
(3. 3)__ azo)

where n = 1, 2, 3,... is an index distinguishing the roots. The labelling is
chosen such that k. is piecewise continuous in 0k and to. Then, let 61c, 0 )
be the saddle-point of the expression (3. 1), or, equivalently, a root of

a- 1k (wo,Ok) cos(A - 0) 1 - 0 (3.4)

For weak winds (which is the case of physical interest) it should be required
that IOk. - 01 is less than v/2 in the event that one need distinguish among
multimple roots of Eqn. (3.4)

In terms of k = kn ((o, Ok ) and Ok = Okn (•,0), one may set

•n ý k cos (Ok - t (3.5)

An = 2(2/o)1/2Qke-iv/4 (3.6)

where

Q _ to- I( ) YU (0)/Z, 6,,) (3.7)

- 1k ( , ,k ,o (0k - f ) l ( 3.8 )

To compute it, and An for given and u. one first determines the appropriate
vl.ues of Ok and k and uses these in the above expressions. The differentia-
tion in Eqn. (.) 7) is carried out at constant Ok , while that in (!. 8) is carried
out at constant 0. (A more convenient expression for '? is given by Lqn. (6. tf).)

It is not necessary to consider the case, Oseparately, since the (act that
b.th I (t) arI r (.; ) are real implies

p(/I.") -p4( ., P .9)



and therefore implies

A-(w,0) - An(..w,0). (3. 1Oa)

on(W) - _Pn(.W) (3. 1Ob)

(It may be assumed that fis real, since we are lilniing ourselves to undamp-
ed modes.)

The surfaces of constant phase fcor given w and mode number a are determined
by the condition that 3n RT in the exponent rif Eqn. (3.2) be constant, or

K (3.11)

where K is a constant. The normal to such a surface at a given value of 0
makes an angle

0.- tan-I (RjI dRT/d0)

with the x-axis. It is readily shown from Eqns. (3.4). (3. 5), and (3. 11) that
this angle is identical with Ok (,z. 0e). Thus the vector k is perpendicular to the
surfaces of constant phase.

- t0-



IV. GROUP VELOCITY

The expression (2. 5) for the pressure on the ground aj a function of time may
be rewritten using the approximation (3.2) in the form

P (r, 0 P 01 p/1 (0) p ; 1/2(zo) 0n (RT, 0, 0 (4.1)

where

'on (RT, 0, ) = Re ,(cu ! )A. (w, )e nRT dw (4.2)

represents the normalized contribution to the total waveform from the nth
normal mode. Although the integration limits are written as o and -. , it must
be borne in mind that, generally, the solution to Eqn. (3. 3) corresponding to
the nth normal mode will exist only for a limited range of c. There may be
either an upI•r or a lower cutoff frequency - or possibly both. It is conceivable
that the mode may also have a number of frequency gaps, for which the mode
does not exist. To allow for such situations, we adopt the convention that the
An (w, 6) should be considered as zero whenever there is no corresponding root
of Eqn. (3. 3).

The traditional mgthod of evaluating the integral in Eqn. (4. 2) is the method of
stationary phasel . Although the method in its unmodified for-n has limited
applicability to acouxtic-graviry waves, the modifications devised by Scorer 9

and by Weston 2 may getrerally bt incorporated to make the method a valid
approximation for the computation of the waveform at distances greater than
5000 k1m from the source. For many qualitative aspects of the interpretation
of the waveforms, the unmodified method appears to be satisfactory. In this
paper we restric. ourselves to the traditional method. A direct application
gt.¢ s

whore

- - ~ - -~-------- ~(4.4)
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and ci i (0, c!Rr) is a toot of

d/i (w, R)/dW - :iRT (4.5)

(The subscript n is omitted for brevity. ) The sum in (4. 3) extends over all
such roots if more than one exists. The quantity 3 is the phase of g (&4 and
the parameter f is a /2 or 0, depending on whether v12f P I/ 2 is positive or
negative, respectively.

The concept of group velocity is derived from the method of stationary phase.

The time t obtained from Eqn, (4.5) represents the time relative to the excit-
ation of the sourc - at which a wave of frequency w in the nth normal mode
a-rives at a point described by the coordinates RT , 0 . Thus, we may consider

the magnitude of the horizoutal group velocity as being givezA by

"g = [ i0 -(4.6)

Since we are assuming that the medium does not vary in the x or y directions,
it must be assumed that the group velocity is in a radial direction away from
the source (i. e., in a direction making an angle of Owith the x-axis).

In terms vf the parameter OL. which describes the direction of the horizontal
wave vector 9 with respect to the x-axs, the components v-g, and v•Y of the

horizontal group velocity are given by the expressions:

co Ok k- sn%1(2kkc k 4. 7a)
(d (dknito)

- Sit - ; 1 eo~9) (~~ ~(4. 7b)
v• -• (c' kn: do,)

where, in evaluating the partial derivativ-•s, kn( ) i' ai found from Eqn.

The proof of Eqns. (4. 7) follows from Eq**.. (3. 4) and (3. 5), which give

(Note that the magnitude of St•, t, is the same regardless of whether 0 or %
is kopt constant while differentiating. ) •nsertion of these expressions into

Eqns. (4. 711 give* a group velocity with ;e magnitude (4.6) and with i 4drec.on

nutMag &A anile of # with the x-axiso



It should be noted that surfaces of equal phase are not necessarily surfaces
of equal arrival time. If a K independent of 0 can be chosen in Eqn. (3. 11)
such that the resulting value of RT(w, o ) is equal to v (,, o )t for some time t,
this would be the case. However, this would require

d
) 11n(w,,0)v (w,0)1 = 0

which would in turn require that

dOk k• 1Ok) ,0hi

which is clearly not true in general. Two circumstances where the above
would b- satisfied are: (a) no winds (k independent of 0k); and (b), k(w, )
directly proportional to c. The latter, as we show in section VII, occurs for
the case of an isothermal atmosphere with constant winds.
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V. EIGENFUNCTIONS AND EIGENVALUES

For all practical purposes, the only modes of intexest which may 6e attained
from Eqn. (3. 3) are those for which Yu (z, (a, k, 0 c) ik, zero at z •o. An additional
mode apparently exists where 1l(zo) ý 0 which appar ently represents a disturb-
ance traoveling in the direction of the anmbient wind at altitude r. with the same
velocity as the wind. One may discard this mode if he is interested only in
modes which travel with speeds of the order of the sound speed at the ground.
(We assume the wind speeds are significantly less than tLe rpeed of sound.)

If k ft kn(w,,0k) is a root of the equation Y,(0) ,- 0, then the corresponding pair of
functions, Z. (z) and Yu (z), may be considered as an eigenfunction pair of the
e:oupled differential equatior.s (or residual equations).

dY dz - AY - A,1 Z 0 (5. la)

dZ/dz AZ - A12 Y 0 (5. Ib)

and may be denoted by the symbols Zn z( cA, Ok) and Y, (z, a, 0k). The root kn(&. 0 0k
may be considered as an eigenvalie. The problem of fiuding the roots cf Eqn.
(3. 3) may therefore be considered as that of finding the eigen.,alues of Eqns.
(5.1).

In accordance with our remarks in section III, we c,-usider only those eigen-
functione which correapond to real eigenvalues. Thus, A1 2 and A21 must both
be real. This implies that any set of solutions of Eqns. .5. 1) which satisfy the.
lower boundary condition of Y = oat z = 0 must be real functions of z, ipart from
a multiplicative constant which may be complex. Thus, the upper Loundary
conditions castnot be sa.isfNd if the phase of a in Eqn. (2. 14) is 0 or i. The
phase of a must be f ý,2 . This proves that any real eigenvalue k(., 00 satisfies
the condition

€"I t(k. i.) ',- , > k. 0 k

where and 2 are given by Eqns. (Z. Ib). The niature oi such a constraint
is bent demonstrated by plotting the functions wj and 112" IB figure 1, these,
as well as are plotted versus k for fixed angle between k and V'. Numerical
values used are such that in (a), C. 0 -(1 . c~k. and in (b), km - -I 0jc,,k . For
simplicity, k is plotted in units of :;m and .ý is plotted in. units o.' :, Rn where
Hm is the scale height ,'0 r . Figure I may be coneidere as repreenting general-
izations oj 4he diagnostic diagram for a qtdescent isothermal atmsphere given
by Eckart
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VL INTEGRAL THEOREMS

A number of theorems may te derived relating the variation of the eigenvalues
and eigenfunc tio1ns of Eqns. (5. 1) to small variations in the atmospheric sound
speed and wind speed profile,i and to small variat'ions in the parameters W anu
%. Theme theorems all follow from a general th,'orem which we now prove.

We assume that Y and Z are a set of eigenfunctiona of Eqns. (5. 1) for given
A (z), A 12 (z), and A2 1 (z) . Let SA, 6A1 2 , and 8A21 be small variations in the

quantities A, A12 , ind A2 1 . Then let Z + 87Z, Y + SY be solutions of Eqns. (5. 1)
when A, A12 , and A2 1 are replaced by A + SA, A1 2 + BA2 1 and A2 1 + BA2 1 . (It is not

n.-cessarily assumed that Z + SZ, Y4 SYare a set of eignfunctions, but it is assumed
that they conform to the upper boundary condition.) To first order, the variations

V;, SY will then satisfy the two coupled inhomogeneous equations

d(SY)/dz - A(SY) - A2 1 (8Z. 1 (BA)Y +(8A2 1 )Z (6. la)

d(8Z)/dz + A(SZ) - A12(8Y) = -(SA)Z + (BA12 )Y (6. lb)

It follows directly from Eqns. (5. 1) and (6. 1) that

d )Y(aZ)-_Z (SY) = (SA12) y2 - (SA21 )Z2 _ 2(SA)YZ (6.2)
dz

The desired theorem is now obtained by integrating both sides of the above
equation with respect to z from o to .. , giving

(Z (5Y) z O f {(SA 1 2)Y2 - (SA 2 1)Z 2 " 2 (A)YZ4 dz (6.3)

where use has been made of the fact that both Y and Z approach zero as z ap-
proaches infinity and of the fact thatY.0 at z - 0.

Under the most general variation we will consider, c . V. k. w. and Ok go to
C2 * SC2 , etc. The corresponding variations SA, 6AI 2 . SA- 1 to first order may
be found from Eqns. (2.9-2. IZ)to be

SA - -(A,€ 2 )Sc 2  - (2c 2 )- 1  (ddM ) (c 2 ) (6.4)

, (4!~C2) Ae2 - (SIC2 ) OASd*) (Sh- - 20k. S"

- 2 11(;.' '*'k) k 2 0ALJ8 2 a k, *sin, 6'8) 5%* (6.5)
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SA2  = 
4 

4FC
2 

4-(kf
3 k. Sv -, 2k3 iV-3 &k

- (2k 2 / I/}) 3(u) - (2k 3v/fl3 ) sin - a Ok (6. C)

where 0, (z) is the angle between v and the x-axis.

Insertion of expressions (6. 4-6. 6) into (6. 3) with an additional integration by

parts to eliminate terms with (d/dz) 3 c2  gives

{Z(SY)}zO = - l0 1k + 12 8 t+ 1 50k -12 (6.7)

where

II 2fbo I(k.v/k)Y2 + k.1-3Z2) dz (6.8)

12 =,2 f (ly2 (k2 / 3)Z2 dz (6.9)

23 fk v sin (O, - t~v I0Y.(k2p3) Z2td (6. 10)

0

/g 2[ ) C4 - 2 c] 11 Y ,.k'Q22 (6.11

[(•2' c2) (k ") - g c4 I (ci2) dz

N2 f '~ P (k'
0

In obtaining the expression for %.'use has been made of the differential equd-

tions (5. 1) to eliminate terms in j/ dz and j), j,
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We may now apply Eqn. (6. 7) to a number of special cases:

L. Expression for dY/dk at z 0.

We consider &u, 80k, 8c 2 , 84 as being zero. Then (6.7) gives

(OY/dk)Zýo - - 11/z(0) (6.13)

The factor Q which appears in Eqn. (3. 7) is therefore

Q = -Z(zo) Z (0)/I l(zo) 1  (6.14)

2. Expressions for dk/dlw and dk/dýi.

The variation of k with (a for a given normal mode and for fixed fc may be
obtained from (6.7) by letting (SY)zo = 0. Thus

ak/dw = 12111 (6.15)

In a similar manner, one finds

dk/dOk =3fI• (E. 16)

3. Expression for group velocity.

Insertion of Eqns. (6. 15) and (6. 16) into Eqns. (4. 7) gives expressions
for the components of the group velocity. After some manipulation. one
may write the resulting two equations as a siigle vector equation in the
form

1  . (11/Il)k/k + < >(6. 17)

where

a (2/11) f jIfly2  (k2 '!03)Z 2 I d- (6.18)

0

One shculd note that. in the event V is consta'it, AV Is V

4. Effl~ct of Atmosphkric Perturbations onk-

11 the i enfunctionsZ and Yrand correspondingl eigenvalue k, for given •
and - &Wd for a given model atmosphere. are known, then the eff-ct on thme
eigenvalue k of varying the atmospheric sounI and wind profiles is given
to first order by

- 18-



k -= A 2)/I (6. 19)

The consequences of this equation are discussed in section VIII.



VII. PROPAGATION IN AN ISOTHERMAL ATMOSPHERE
WITH CONSTANT WINDS

The simplest model atmosphere including winds is one with a consta• t temper-
ature and a constant wind velocity. For such an atmosphere, the upper layer
with constant sound speed cm and wind velocity , coincides with the entire at-
mosphere. The solutions of Eqns. (S. 1) which satisfy the upper boundary con-
dition are of the form (2. 14). The lower boundary condition requires

S-- - , - (I - y/2)gcm (7. 1)

It follows that there is only one eigenvalue; it being given by

k = 0j / [ Cm + vm cos(0% - 0vm) (

The corresponding functions Zand Y may be taken as

"Am z (7. 3a)

Y =0 (7. 3b)

The relationship (3.4) between 0 and Ok becomes

vm sin (Ok - 0 vm) 7.4)
Cm VIn cos (Ok -vm)

or (omitting the subscripi' rrn)

c sin (Ok - 0) = v sin (0- 6v' (7.5)

The corresponding expression for /3 (,. f? is readily found to be

(to.,c) (7.6)

I I - (VC) 2 sin~ I- 0) I , 2 ,(-cicos (0-

and the group velocity is therefore

V (c. - v2- in. (C 0 2 cos ( 07. 7)

which is independent of frequency. The significance of the above equation is

much clearer if it is expressed in terms of v V co -t) and v d
Vm I - "V With a iittle manipuIttun. Eqn. (7. 7) then aSsumes thr
for m

- ,,2 : ,? • (7. $)
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which shows, as might well be expected, that the propagation is' equivalent to
that from a source moving with velocity v in a medium with sound speed c.
The surfaces of equal arrival time are circles whose centers are displaced
from the origin in the direction of the ambient wind. The ratio of the radius
of any circle to the distance of its center from the origin is c/v. Since /3 W, r)
is directly pro-,ortional to w, the surfaces of constant phase will coincide with
surfaces of e;.;,ad arrival time.
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VIIL PERTURBATION METHOD

An approximate method of incorporating winds into a theory of acoustic-gravity
wave propagation is a perturbation method based on Eqn. (6. 19). The unper-
turbed atmosphere is taken as one in which v o . The eigenvalues are then
approximately given (to first order :a 4) by

k w k, 0 k Ic ((-)- q(c)co - qY(o)sin 0 (8.1)

where q% and qy are components of the vector

" It (ki 2'.] Z ' . .3 dz (8.)

J vdzq (CU, 2 3y

I 
Z2 dz

The first tern k0 (() in Eqn. (8. 1) is the unperturbed eigenvalue. The second
and third terms are the first order correction to k(w, 0 k) and are derived from

Eqn. (b. 19) with 8 replaced by ". The quantities Zand Y in Eqn. (8.2) are
the zercth order eigenfunctions and are computed assuming there are no winds.

The cuantities k0A) , q%((u , and qY (w) will be inmlependent of 0 k but will depend
on the mode index n as well as &.

The appdrent uncoupling between th. ok znd c dependences in Eqr. (8. 1) makes

the resuiting formulas for 11(w, 0) and the surfaces of constant phase relatively
s:mple. To first order in qxkO and q. k0, one has

-•to kO 40 ,) - q, (w4) cos 0 - qv (LI) Sin t (8.3)

The surfaces of constant phase (see Eqn. (3. 11) ) to the same order of approx-
i-natio-a are given by the equation

f.- (Kq, (k0)2)- (Kqv It)", 2 K k

(8.4)

mhere K is a constant and s Y - RT .in@ - The surfaces are there-
( -re &;:proximately circles whrse centers are displaced from the origin in the

dii-ctiin of o' and which are characterixed by the number i hO which gives
tMe ratio of the distance of each circle's center from the origin to its radius.
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The group velocity may be readily computed from Eqns. (4. 6) and (8. 3). To
first ordL one finds

V VC) (61) 4 (1 2 rqj (w) cos 0 ,q'(w) sin (8.5)

where v0 is the zero order group velocity, or (dk 0 /lbaj 1 , while q; and q' are
the derivatives with respect to uof q, and qY

The surfaces of constai.t arrival time are circles to the same degree of approx-

imatiori

02O 2 2 02-2 02 (8.6)
- v)xt q; L - (V )2q9 tj-(Vt

The center of the circle moves with a velocity (vO0)2 0q'/niw while the waves move

out from the center with a velocity vo.

To demonstrate the utility of the method outlined above, we apply it to the
computation of the effects of winds in a realistic case. The wind profile is
taken as measured by Diamond1 0 above White Sands and as exhibited in figure
! of his paper. The cited figure indiatp'.i that north-south components may he
neglected. Taking x to be in the eastward direction, we therefore have q,. •

In the computation of q% we rely on the rumerical computations of Pfeffer and
Zarichny5 . In particular, we use the plots of kinetic energy versus altitude
for the 52 km model as given by figure 5a in their paper for periods of 48, 87,

Z25, and 3i5 seconds. The kinetic energy t.ey tabulate should be proportional
(as regards variation with z ) to the quantity

I k 0 2, 2 1 1 2

in the notation used here. For low frequencies and for the 52 km model atmos-

phere used by Pfrffer and Zarichny, it -tpoears that one may safely neglect the
second terir in the above. Thus the quintitv q,,, is approximately

,' (Ku v " ,, (•" .

Ctrt1r OIV*nid kd VrriAUS pr rioxd Ate g'tvcn ini tigurr 4 A Pfeffer And
9

/Arthtw£ P.Apei.



Using Eqn. (8, 7). we have computed '(M) l 'C ' for the four frequencies for
which KE is plotted by Pfeffer and Zarichny. A curve fitted to these values
is given in fig•ure Za. A rood fit to this curve over the frequency range of
interest is

qx (su'l - -2.7 -, 10-4 1I.23

where (a is in radians/sec and qt is in meter-i. Thus the magnitude of .qi/dw
increased blowly witsh increasing frequency.

In fgvre Zb we plot the fat-tor (YO)2 q. versui period. Curves obtained using
Eqn. (8. 5) of group velocity verses pericd are given for various values of 0
in figuxre 3. It should be noted that the principal effect of winds in this partic-
ular example is to increase the group velicity for downwinrd propagation and
decrease it for upwind propagation by an increment of roughiy 15 meter/sec.
However, the winds also mtrongly affect the dispersion of the wave. Since the
group velocity curve for dow,-w ind propagation i.s flatter than that for upwind
propagation. the signal observed to the east (upwind) will be more dispersed
than that observed to the west (downwind).
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IX. CC.,C.TTITDING REMARKS

The theory outlined in this paper gives a method whereby the effects of winds

may be readily incopcrated into the stuAy of the propagation of acoustic-gravity
waves. Furthermore, the example treatvd in the previous section indicates

that the consideration of winds may L- nec -ssary in a quantitative interpreta-

tion of actiLal microbarograms.

The principal complication introduced by v inds is that they transform the at-

mosphere i.nto an ani.z•-repic medium. The magnitude of the horizontal wave
number vector (which acts as an index of refraction) depends on the vector's

direct.ion as well as on frk,- uency. This would appear to make the computation

of the pha;.e and group velocitiee more difficult by an order of magnitude. How-
ever, the perturbation theory developed here (which takes advantage of the small

ratio of w'nd velocity to so-and speed) requires only the computation of two func-
tions "((,, and q. t in adci:i.on to the wind-independent wave number kO ('0i

With th,.s :3ir plification the ,:onsidc ration of winds becoes feasible.

The pertu:bation .met.ho•d is but one application of the integral theorem•s develv~pe.4

in this paper. These show promise of being useful in tl•e numerical calculation
of phase and group velocities as well as in the development of approximate
methods• .f solving the residual equations.

The quesrtion new remains as to whether or not a model atmiosphre with winds
independent of horizontal cocrdinates is a satisfactory model for the actual
atmosph-€re. Certainly, it should be m~ore satisfactory than a .- io,•el at:-mospher*-.

without '%ýr.ds. However, a glance at the flow patterns of the atmospheric winds

on a glotal scale given in the Handbook of Geophysics indicates that some

rrodifica:ion of the theory may be requtred to take into acccunt the curvature of
the streamlines cf tl-k ambient winds. Such a nodification should be necessary

for prop ,gation o,'er hcrizontal paths of 7,000 km or greater. Te present
theory n ay be readily extended to cover such situation- by using the ,lathernat-

ical tectniques discoassed by the authorI') in a previou!. theory of wave propaga-
tion in an almost-stratified mediurn. This extension wi.l be given in a later
article.
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